Case reports

U. LUCANGELO1, L. FONTANESI1, V. ANTONAGLIA1, F. ANTOLINI1
G. BERLOT1, G. LIGUORI2, A. GULLO1

1Department of Perioperative Medicine
Intensive Therapy and Emergency
University of Trieste, Trieste, Italy

2Operative Unit
Department of General Surgery
and Surgical Therapy
University of Trieste, Trieste, Italy

Several authors have reported their experience with HFPV in neonates with hyaline membrane disease,2, 3 in patients with neuromuscular disease 4 and in those with acute respiratory failure following chest trauma.5

In a pilot study on patients with cystic fibrosis, Natale et al.6 compared the effects of HFPV with those of conventional chest physiotherapy. HFPV has also been studied in patients with post-traumatic intracranial pressure.7, 8 Gallagher et al.9 compared techniques of conventional mechanical ventilation (CMV) and HFPV in patients with respiratory failure following sepsis and trauma.

The use of HFPV has produced a significant improvement in lung gas exchanges at equal airway peak pressure and FiO2. Moreover, the maneuver has been shown to maintain normocapnia, without causing hemodynamic alterations. Despite these positive results, HFPV is used only occasionally and no clinical protocols for its clinical use have yet been formulated.
Case 1.—A 71-year-old man, body weight 69 kg, (SAPS II 40), was transferred from General Surgery to the Intensive Care Unit (ICU) with a diagnosis of acute pancreatitis. On admission, the patient was alert and cooperative, breathing spontaneously with the aid of supplemental oxygen delivered by a mask (FiO2=0.5). A prior CT scan demonstrated at the level of the abdomen tumefaction of the pancreas, accompanied by retro- and peritoneal effusion; at the level of the chest there was bilateral pleural effusion. According to the patient's medical history, he suffered from generalized obliterating arteriopathy and had been hospitalized 7 years earlier for myocardial infarction. Physical examination disclosed tachypnea, moist noises in the left lung base, a chest X-ray (Figure 1A-C) demonstrated thickening of the left lung base (Figure 1A). In light of the deteriorating blood gas profile (PaO2/FiO2=138.8; pH=7.47; PCO2=31.6 mmHg), tracheal intubation was performed and constant flow CMV instituted (Puritan Bennett 7200, CA, USA), with Vt=10 ml/kg; RR=12 b/min; I/E=1: 2.5; PEEP=5 cm H2O, FiO2=0.7). Twelve hours later, oxygenation values did not improve (PaO2/FiO2=142.3; pH=7.33; PaCO2=47.0 mmHg) and airway obstruction worsened due to abundant secretions; one cycle of HFPV (VDR®4) was given at an operating pressure (27 cm H2O) equal to 2/3 the peak CMV pressure.

A radiographic examination at the end of treatment demonstrated an increase in lung volumes, a reduction in the upper 2/3 and a better visibility of the vascular system, without significant changes in the left lung base infiltration. A blood gas analysis performed 12 hours after the end of treatment, with CMV at constant volume, confirmed the maintenance of PAO2/FiO2=206, which remained stable over the following days. Figure 2 shows the trend of PaO2/FiO2 before, during, after and at 12 hours after treatment after return to CMV.

Case 2.—A 75-year-old man, body weight 80 kg, (SAPS II 33), was admitted to the ICU after surgery for a phlegmon of the neck complicated by mediastinitis. The patient suffered from ischemic heart disease; a control ECG demonstrated inferior necrosis of undetermined onset.

A postoperative chest X-ray demonstrated reduced expansion of the lung fields. Over the following days, the clinical picture worsened due to formation of parenchymal thickening of the left lung base; bronchoscopy was repeated to remove the large quantities of thick secretions.
After 9 days on CMV (Puritan Bennet 7200, CA, USA), with Vt=8 ml/kg; RR=12 b/min; I/E=1:3; positive and-expiratory pressure (PEEP)=10 cm H$_2$O; FiO$_2$=0.4, although the gas exchange values remained acceptable (PaO$_2$/FiO$_2$=259.7), continued abundant secretions that were difficult to remove made weaning from the CMV impossible. The patient received a cycle of HFPV (VDR® 4) at an operating pressure set to $2/3$ the initial value, with a percussion frequency of 800 cycles/min and FiO$_2$=0.3. Initially, the PaO$_2$/FiO$_2$ ratio remained near the starting values, but after several hours of treatment, the secretions were effectively liquefied and removed, leading to improved gas exchange, which was maintained 12 hours after the end of treatment (PaO$_2$/FiO$_2$=309.2) (Figure 3).

Case 3.—A 76-year-old man, body weight 50 kg, (SAPS II 30), affected with chronic obstructive pulmonary disease (COPD), left fibrothorax and sequela of a cerebral ictus that had occurred 6 months earlier, was admitted to the ICU because of lack of recovery of spontaneous breathing following Miles’ operation. Ventilatory support was continued using pressure support ventilation (PSV=19 cm H$_2$O) with PEEP=5 cm H$_2$O (Puritan Bennet 7200, CA, USA); a radiographic chest examination demonstrated the presence of an opacity in the left lung base. The following day, despite the increased pressure support (PSV=22 cm H$_2$O), the patient developed dyspnea and tachypnea with the effort of accessory respiratory muscles; blood gas analysis revealed PaO$_2$/FiO$_2$=117.8, pH=7.48, PaCO$_2$=36.3 mmHg. Ventilation with HFPV (VDR®4) was instituted.

The HFPV parameters were set to ensure that the habitual PaCO$_2$ values for a patient were reached. After a brief initial period of adaptation, the clinical conditions gradually improved as did oxygenation, with a trend to stabilization of blood gas values: PaO$_2$/FiO$_2$=319; pH=7.46; PaCO$_2$=41.4 mmHg. Throughout treatment (12 h), the patient did not manifest intolerance to HFPV, as shown in Figure 4.
return to PSV, the need for pressure support diminished significantly (PSV=15 cm H$_2$O), so that the patient could gradually be weaned from ventilatory support.

In the cases described above, the most salient result is the improvement in gas exchange over the 12 hours of treatment with HFPV (VDR®4); the result remained substantially unchanged at 12 hours and after return to CMV. The short-term duration of treatment was chosen with the intent to limit interference from confounding factors that could have masked the effect of HFPV. Two of the 3 patients were placed on CMV after sedation or curarization, which was maintained during the HFPV cycle. The only patient with spontaneous breathing was gradually adapted to the VDR®4 system ventilator (Figure 4) without sedation. No patients experienced hemodynamic alterations and/or barotrauma.

Numerous past studies have underlined the positive effect of high frequency ventilation and rapid chest wall compression on mucociliary transport and mucus clearance 10-14. This mechanism may also be hypothesized in our patients, in agreement with the results of the pilot study on patients with chronic bronchopathologies who had been treated in spontaneous breathing with a simpler HFPV system (intrapulmonary percussive ventilation, IPV) 15.

It can be reasonably thought that efficacious and early removal of secretions may have played an important role in preventing complications from pulmonary infection, thus promoting early weaning from the CMV. In case 1, the improvement in PaO$_2$/FiO$_2$ occurred in the presence of left lung base inflammatory infiltration, which did not improve with the use of HFPV.

The 2nd chest X-ray (Figure 1B), demonstrated that the method, using an operating pressure 2/3 that of the CMV peak pressure, was potentially better able to keep the lung parenchyma better aerated.

With the return to CMV, there was radiographically documented loss of recruited lung volume (Figure 2A) accompanied by a slight decrease in PaO$_2$/FiO$_2$, which remained stable over the following days. In this case, it appears clear that HFPV, like CMV, does not influence the course of lung thickening but does maintain healthy parenchyma better aerated with the removal of bronchial secretions.

In case 2, the PaO$_2$/FiO$_2$ was >200 in CMV (PEEP=10 cm H$_2$O), so that the objective was to maintain adequate gas exchange and to remove secretions. The response to treatment can be seen from the biphasic trend of PaO$_2$/FiO$_2$, which in the first 9 hours remained substantially unchanged since the attempts to remove secretions were ineffective. Later, as the PaO$_2$/FiO$_2$ increased, so did the amount of removed secretion (21 of 25 ml in 12 hours). In case 3, the HFPV maneuver was well tolerated and able to adapt to the needs of a patient with a flare-up of COPD, in the failure phase, and with spontaneous breathing, without the need for sedation and paralysis.

In our preliminary experience, we wanted to use HFPV in those cases in which CMV failed to reach the planned target or when weaning from ventilatory support appeared problematic. Despite the attractive advantages the manufacturer described for the mechanisms by which gas exchange can be improved, 16 in practice none of them alone was sufficient; nonetheless, the effective removal of secretions, evident after the first hours of treatment, in itself represents an element of clinical importance in the application of this maneuver. Removal of secretions occurs in the interval between the delivery of 2 gas mini-bursts, i.e. when the lung volume tends to return to starting conditions after having reached peak pressure. In this way, the pressure exerted by an individual pulse works like a pneumatic hammer in removing secretions and reopening the obstructed airways. In 2 of the 3 cases described above, the PaO$_2$/FiO$_2$ obtained with CMV was <200; in all cases initial ventilatory support was set to the following parameters:

- PaO$_2$ >100 mmHg using FiO$_2$ ≤0.5 and Vt 8-10 ml/kg;
— PaCO₂ between 30 mmHg and 40 mmHg;
— pH > 7.35.
The failure to reach these values and, as explained above, the difficulty in weaning the patients from CMV were the reasons why we decided to use HFPV.

A good correlation exists between improvement in PaO₂/FiO₂ and the quantity of secretions removed through an endotracheal tube or through the oropharyngeal cavity. This shows that, because the expiratory phase is activated by oscillation, mucus transport can be achieved also above the cuff and therefore mucociliary clearance can be increased. Considering these elements, it can be reasonably stated that HFPV constitutes not only an alternative mode of ventilatory support but that the maneuver combines the therapeutic effect provided by nebulization of mucolytic agents and bronchodilators in the circuit with the maintenance of adequate humidification. In this way, the secretions are first liquefied and then easily removed. In our experience, capnographic and blood gas monitoring proved vital for the correct use of the device. In fact, we found a considerable capacity for removal of CO₂, most likely linked to augmented alveolar ventilation and to the creation of vortexes at the level of the airways. This feature could significantly influence pathologic conditions (e.g. acute respiratory distress syndrome, ARDS) in which hypercapnia represents the “price to pay” for maintenance of adequate blood oxygenation, while limiting the risk of pulmonary barotrauma. The method was found to be devoid of major side effects; the risk of barotrauma, which has been reported for other modes of high-frequency ventilation, is, in fact, limited because the circuit is open, so that airway pressure never exceeds the set pressure. Furthermore, no significant hemodynamic alterations were observed.

This preliminary experience suggests that in patients with altered gas exchange also due to secretions treatment with alternating brief cycles of HFPV and CMV was shown to be effective. Further studies will be needed to determine the conditions for routine use of this mode of ventilatory support.

References
el precedente lavoro sono stati esposti i principi della ventilazione a percussione ad alta frequenza (high frequency percussive ventilation, HFPV), ponendo particolare attenzione agli aspetti tecnici e ai principi di funzionamento del ventilatore volumetric diffusiva respirazione (VDR® 4). Scopo del presente lavoro è descrivere, in base all’esperienza acquisita presso la nostra Terapia Intensiva, alcuni casi clinici, fra i tanti trattati con esito positivo, al fine di rendere nota la risposta clinica alla HFPV e favorire il riconoscimento dei pazienti che possono avvantaggiarsi dall’uso della stessa.

Alcuni Autori hanno riportato la loro esperienza con questa metodica di ventilazione (HPFP) nei neonati sofferenti di malattia da membrana polmonare, in pazienti affetti di malattie neuromuscolari e con insufficienza respiratoria acuta conseguente a trauma toracico. Natale et al. hanno condotto uno studio pilotato allo scopo di confrontare gli effetti della HFPV con le tecniche di fisioterapia respiratoria convenzionale nei pazienti affetti da fibrosi cistica. L’utilizzo di questa metodica di supporto del ventrale è stato studiata anche nei pazienti con lesione intracranica post-traumatica.

Gallagher et al. hanno inoltre comparato le tecniche di ventilazione meccanica convenzionale (conventional mechanical ventilation, CMV) con la HFPV in pazienti con insufficienza respiratoria acuta secondaria a sepsi e trauma.

L’uso della HFPV ha determinato un significativo miglioramento degli scambi gassosi polmonari, una riduzione degli infiltrati nei 2/3 superiori e una migliore visibilità del sistema vascolare, senza modificazioni significative dell’addensamento basale di sinistra. La ventilazione è stata usata occasionalmente e a tutt’oggi non si conoscono protocolli clinici per il suo impiego.

Caso 1. — Paziente di 71 anni e 69 kg (SAPS II 40), proveniente da un reparto di Chirurgia Generale, è ricoverato in Terapia Intensiva con diagnosi di pancreatite acuta; all’arrivo si presenta sveglio e collaborente, in respiro spontaneo, con supporto di ossigeno mediante maschera (FiO2=0,5).

Una precedente indagine TAC aveva evidenziato, a livello addominale, una tumefazione pancreatica, accompagnata da versamento retro e peritoneale; a livello toracico era presente un versamento pleurico bilaterale. Dal punto di vista anamnesticamente, il paziente è sofferente di artralgie obliteranti generalizzate: 7 anni prima, era stato ricoverato per infarto del miocardio. Il paziente si dimostra tachipnoico; l’esame obiettivo del torace evidenzia la presenza di rumor umidi alla base di sinistra; il controllo radiologico del torace evidenzia un addensamento alla base sinistra (Figure 1A-C). Visto il concomitante peggioramento del quadro emogasanalitico (PaO2/FiO2=138,8; pH=7,47; PCO2=53,6 mmHg), si decide per l’intubazione tracheale e l’inizio della CMV a flusso costante (Puritan Bennet 7200 - CA, USA) con Vt=10 ml/kg; RR=12 b/min; I:E=1:2,5; pressione positiva finale espiratoria (positive-expiratory pressure [PEEP]=5 cmH2O, FiO2=0,7). In mancanza di un miglioramento degli indici di ossigenazione dopo 12 ore (PaO2/FiO2=142,3; pH=7,33; PaCO2=47,0 mmHg) e tenendo conto della presenza dell’aggravarsi della condizione di ostruzione a causa delle abbondanti secrezioni, si decide di intraprendere un ciclo di HFPV (VDR®4) impiegando una pressione di lavoro (27 cmH2O) pari a 1/3 della pressione di picco utilizzata in CMV.

Il controllo radiologico eseguito alla fine del trattamento evidenzia un aumento dei volumi polmonari, una riduzione degli infiltrati nei 2/3 superiori e una migliore visibilità del sistema vascolare, senza modificazioni significative dell’addensamento basale di sinistra (Figura 1B). L’emogasanalisi eseguita a distanza di 12 ore dalla fine del trattamento, con CMV a volume costante, conferma il mantenimento dei valori di PaO2/FiO2=206, che si mantiene costante nei giorni successivi. La Figura 2 dimostra l’andamento del rapporto PaO2/FiO2 prima dell’inizio del trattamento, nel corso dello stesso, alla fine e a distanza di 12 ore, dopo ripresa della CMV.

Caso 2. — Un paziente di 75 anni e 80 kg (SAPS II 33) è accolto in Terapia Intensiva in seguito a intervento chirurgico per un flemmone del collo complicato da colata mediastinica. Il paziente è sofferente per una cardiopatia ischemica e un ECG di controllo evidenzia un necrosi inferiore risalente a epoca imprecisata.

Il controllo radiologico del torace, eseguito nell’immediato postoperatorio, evidenzia una ridotta espansione dei campi polmonari. Nei giorni seguenti il quadro clinico si complica con formazione di un addensamento parenchimale alla base sinistra; si rendono necessarie ripetute broncoscopia per rimuovere una quantità notevole di secrezioni dense.

Dopo 9 giorni di CMV (Puritan Bennet 7200 - CA, USA) con Vt=8 ml/kg; RR=12 b/min; I:E=1:3; PEEP=10 cmH2O; FiO2=0,4, sebbene gli scambi respiratori si mantessero a valori accettabili (PaO2/FiO2=259,7), persiste l’esistenza di abbondanti secrezioni e la difficoltà a rimuoverle è risultata la causa del mancato svezzamento dalla CMV. Il paziente è sottoposto a un ciclo di HFPV (VDR®4) utilizzando una pressione di lavoro impostato corrispondente a 1/3 del valore iniziale;
con frequenza di percussione di 800 cicli/min e
FiO₂=0,3; inizialmente il rapporto PaO₂/FiO₂ si è
mantenuta vicino ai valori di partenza. Dopo alcune
ore di trattamento, l'efficace fluidificazione e rimo-
zione delle secrezioni ha fatto registrare il migliora-
mento degli scambi gassosi che si è mantenuto anche
da distanza di 12 ore dalla fine del trattamento
(PaO₂/FiO₂=309,2).

Caso 3. — Un paziente di 76 anni e 50 kg (SAPS II
30) affetto da pneumopatia cronica ostruttiva (chro-
nic obstructive pulmonary disease, COPD) con fibro-
torace sinistro ed esiti di ictus cerebri 6 mesi prima del-
l'intervento, viene ricoverato in Terapia Intensiva per
la mancata ripresa dell'autonomia respiratoria in segui-
to a intervento di resezione colica secondo Miles.
Viene proseguita l'assistenza respiratoria mediante
supporto pressorio (pressure support ventilation, PSV=18 cmH₂O) con PEEP=5 cmH₂O (Puritan Bennet
7200 - CA, USA); un controllo radiografico del tora-
ce evidenzia la presenza di un'opacità basale sini-
stra. In 2ª giornata, malgrado l'aumento del suppor-
to pressorio (PSV=22 cmH₂O), il paziente presenta
grave dispnea e tachipnea, con impegno dei musco-
lì respiratori accessori; il controllo emogasanalitico
evidenzia: PaO₂/FiO₂=117,8, pH=7,48, PaCO₂=36,3
mmHg. Si decide di procedere a ventilazione median-
te HFPV (VDR® 4).

I parametri dell'HFPV vengono regolati in modo da
garantire l'ottenimento di valori di PaCO₂ abituali per
il paziente. Dopo un iniziale e breve periodo di adat-
tamento, si ottengono un graduale miglioramento cli-
nico e una migliore ossigenazione con tendenza alla
stabilizzazione dei valori dell'emogasanalisi: PaO₂/FiO₂=319; pH=7,46; PaCO₂=41,4 mmHg. Per tutta la
durata del trattamento (12 ore) il paziente non mani-
festa intolleranza all'HFPV (VDR® 4).

Successivamente, l'incremento del rapporto
PaO₂/FiO₂, che si è mantenuto costante nei giorni successivi. In questo caso
appare evidente come l'HFPV, al pari della CMV, non
eserciti alcuna influenza sull'andamento dell'adden-
samento polmonare ma, mantenga il parenchima polmonare
sano più aerato con la rimozione delle secrezioni bronchiali.

Nel 2º paziente va segnalato come il rapporto
PaO₂/FiO₂ fosse superiore a 200 in CMV (PEEP 10
cmh₂O), per cui l'obiettivo era mantenere scambi
gassosi adeguati e rimuovere le secrezioni. La rispo-
sta al trattamento può essere evidenziata dall'anda-
manto del rapporto PaO₂/FiO₂, che nelle pri-
me 9 ore rimaneva pressoché invariato, poiché la
rimozione delle secrezioni si presentava improdutti-
va. Successivamente, l'incremento del rapporto
PaO₂/FiO₂ si accompagnava all'aumento del volume
delle secrezioni rimosse (21 dei 25 ml nelle 12 ore)
Nell'ultimo caso presentato va sottolineata la buo-
na tollerabilità e la capacità dell'HFPV di adattarsi
e alle esigenze del paziente COPD ricucitato, nella
fase di scompenso e in risporto spontaneo, senza la
necessità di ricorrere a sedazione e paralisi.

Per quanto riguarda la nostra esperienza prelimi-
nare, abbiamo voluto utilizzare tale tecnica nei casi in
cui la ventilazione meccanica convenzionale non rag-
giungeva i target stabiliti, oppure lo svezzamento dal
supporto ventilatorio si presentava problematico.
Nonostante le affascinanti ipotesi fornite dal costrut-
tore circa i meccanismi attraverso i quali si ottiene il
miglioramento degli scambi gassosi, nessuna si è
dimostrata, da sola, sufficientemente esplicativa; tut-
tavia, l'efficace rimozione delle secrezioni, evidente
già dopo le prime ore di trattamento, rappresenta solo un elemento di un certo rilievo clinico nell’applicazione di questa metodica. Tale fenomeno si verifica tra la somministrazione di un microvolume d’aria e il successivo, ossia quando il volume polmonare tende a ritornare alle condizioni di partenza, dopo aver raggiunto il picco pressorio; in tal modo, la pressione esercitata dal singolo “impulso” agirebbe come un “martello pneumatico” che rimuove le secrezioni e riapre pertanto le vie aeree ostruite. In 2 dei 3 casi presentati il rapporto PaO₂/FiO₂ ottenuto con la ventilazione convenzionale si presentava <200; in tutti i casi il supporto ventilatorio iniziale era finalizzato al mantenimento dei seguenti parametri:

- PaO₂ >100 mmHg utilizzando FiO₂ ≤ 0.5 e Vt 8-10 ml/kg;
- PaCO₂ tra 30 e 40 mmHg;
- pH >7,35.

Il mancato raggiungimento di questi valori e, come precedentemente esposto, la difficoltà nello svezzamento dalla ventilazione convenzionale, sono stati i motivi che ci hanno indotto a utilizzare l’HFPV.

Esiste una buona correlazione tra il miglioramento del rapporto PaO₂/FiO₂ e la quantità delle secrezioni rimosse, sia attraverso il tubo endotracheale, sia dalla cavità orofaringea. Ciò dimostra che, essendo resa attiva la fase espiratoria mediante l’oscillazione, è possibile ottenere lo spostamento delle secrezioni anche al di sopra della cuffia e che pertanto la clearance mucociliare può risultare aumentata. Considerando tali elementi, è ragionevole affermare che l’HFPV costituisce non solo una modalità alternativa di supporto della funzione respiratoria, ma che a questa unisce un effetto terapeutico fornito dalla nebulizzazione nel circuito di farmaci mucolitici e broncodilatatori e dal mantenimento di un’umidificazione adeguata: in tal modo, le secrezioni sarebbero prima fluidificate e quindi più facilmente rimosse. Nella nostra esperienza, il monitoraggio capnografico ed emogasanalitico si è dimostrato essenziale per il corretto utilizzo di tale dispositivo; abbiamo, infatti, rilevato una notevole capacità di rimozione del CO₂ che ha permesso di mantenere le condizioni del polmone adeguate durante il trattamento a bassa frequenza.

Il trattamento dell’insufficienza respiratoria acuta è uno dei problemi rilevanti nella pratica quotidiana della Terapia Intensiva: negli ultimi anni è stato rivelato l’impiego di tecniche ventilatorie per il trattamento della sindrome da distress respiratorio dell’adulto (adult respiratory distress syndrome, ARDS) e insufficienza respiratoria acuta (acute respiratory failure, ARF).

Abbiamo impiegato la ventilazione percussiva ad alta frequenza (high frequency percussive ventilation, HFPV) in 3 pazienti affetti da ARDS o ARF che non hanno mostrato alcun miglioramento clinico durante le iniziali 24 ore di ventilazione convenzionale. Nella nostra esperienza, il monitoraggio capnografico ed emogasanalitico si è dimostrato essenziale per il corretto utilizzo di tale dispositivo; abbiamo infatti, rilevato una notevole capacità di rimozione del CO₂ che ha permesso di mantenere le condizioni del polmone adeguate durante il trattamento a bassa frequenza. Tuttavia, nonostante le condizioni cliniche di questi pazienti siano state soddisfacenti, si è osservato un miglioramento significativo dell’immagine radiologica e della pressione arteriosa.

Parole chiave: Insufficienza respiratoria - Ventilazione percussiva ad alta frequenza - Terapia intensiva.